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NATURAL CONVECTION IN A RECTANGULAR CAVITY 

TRANSIENT BEHAVIOR AND TWO PHASE SYSTEMS 

IN LAMINAR FLOW 
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Absbaet-An analysis is presented for transient laminar natural convection in a rectangular cavity con- 
taining either one fluid or two immiscible liquids. The resultant differential equations were integrated 
numerically and computed results are presented for the transient streamline patterns and for the iso- 
therms, for a variety of conditions including high, low and intermediate values of the Prandtl number. 

The computed results agree with experimental data, both obtained in this study, and reported by other 
investigators. Such comparison is presented regarding temperature profiles, velocity profile, transient 

behavior and the onset of secondary flows. 

CP, 
specific heat; 

D, width of the enclosure; 

99 gravitational constant acting in the 
minus x direction; 

Gr, Grashof number = 
(gBAT*D3)/v2; 

Gr.X, local Grashof number = 
(g/?AT(x*) . x*~)/v’; 

h(x*), local heat-transfer coefficient = 
&*)/AT*; 

h"(x*), local heat-transfer coefficient based 
on the temperature difference be- 
tween the hot wall and the vertical 
centerline of the slot; 

k thermal conductivity; 
L, height of the enclosure; 
NW mean Nusselt number; 
Nu,, local Nusselt number; 

P9 pressure; 

Pi3 initial pressure in static isothermal 
fluid ; 

P’, pressure changes due to density 
variations and fluid motion; 

7 Present address: Shell Development Co., Houston, 
Texas 77001. 

NOMENCLATURE pr, 
4(x*), 
Ra, 
4 
T, 
TI-, 
T,, 
Th, 
kc, uy, 

U, 

X, 

Y, 

Prandtl number = v/x; 
local heat flux; 
Rayleigh number = Gr . Pr; 
time; 
temperature; 
initial temperature; 
cold wall temperature; 
hot wall temperature; 
velocity in the x and y directions 
respectively; 
reference velocity in the x direc- 
tion = XL/D’ : 
vertical co-ordinate measured up 
ward from the lower left-hand 
corner of the enclosure; 
reference distance in the x direction 
= L; 
vertical distance from the origin 
to the interface; 
horizontal co-ordinate measured 
from the lower left-hand corner of 
the enclosure. 

Greek symbols 

BY temperature coefficient of cubical 
expansion; 
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AT, 
AT*, 

AT&*), 

5, 
x, 
V, 
P, 
Pi, 

temperature difference = Th - T,; 
temperature difference = Tz - TI ; 
temperature difference = 
T; - T*(x*,D/2); 
vorticity, defined in equation (8); 
thermal conductivity : 
kinematic viscosity = p/p ; 
density ; 
initial density of the isothermal 
fluid in the enclosure; 
stream function. 

* denotes dimensional quantities. 
Subscripts a and b refer to phases a and b 
respectively, in the two phase systems. 

1. INTRODUCTION 

NATURAL convection in confined systems has 
been extensively studied. The early experimental 
work, starting with Nusselt, was mainly con- 
cerned with the establishment of empirical 
correlations for the heat-transfer coefficients 
for systems contained between two parallel 
vertical plates [l-3]. More recently Eckert and 
Carlson [4] provided useful information on the 
temperature profiles and hence on the circula- 
tion pattern. Elder [5] investigated the velocity 
and the temperature profiles in narrow slots, 
and arrived at the criteria for the establishment 
of secondary and tertiary flows. 

Regarding the theoretical work, the essentially 
asymptotic analyses of Elder [5], Batchelor [6] 
and Gill [7] were followed by the discussion of 
truly multidimensional problems, requiring the 
use of numerical techniques. 

The application of numerical techniques and 
digital computation for natural convection 
problems was pioneered by Churchill and 
Wilkes [S], who studied the steady state and 
transient behavior of fluids contained in rec- 
tangular cavities. In subsequent work Aziz and 
Hellums [9] considered three dimensional 
systems heated from below whereas work by 
Elder [lo], de Vahl Davis [ 111, and Newell and 
Schmidt [12] was concerned with steady state 
systems. 

It is noted that in the majority of cases the 
experimental and analytical investigations were 
carried out independently of each other and 
with few exceptions little effort has been made 
to attempt a direct comparison between pre- 
diction and measurements. 

A recent paper by McGregor and Emery [ 131 
constitutes a notable exception, as these authors 
have obtained very good agreement between 
prediction and measurement for moderate to 
large Prandtl numbers, in the steady state 
regime. 

It is noted that transient behavior received 
much less attention (although in many instances 
the steady state solutions were obtained from a 
transient formulation) and in particular no 
comparison is available between prediction and 
measurement in the unsteady state. 

Another point that may be raised is that in the 
majority of cases the principal motivation was a 
better understanding of the heat-transfer process 
with application to problems such as thermal 
insulation, thermosyphons, and the cooling 
of nuclear reactors. 

Natural convection plays a very important 
role in materials processing at high tempera- 
tures where agitation by other means is im- 
practicable, or where the existence of tempera- 
ture gradients (and the absence of forced flow) 
is an inherent characteristic of the system. 
Examples for such operations are the manufac- 
ture of glass in reverbatory furnaces, various 
slag-metal reactions and the circulation of 
liquid metals in solidifying ingots. These 
problems have been hardly explored up to the 
present. 

The work to be reported here was undertaken 
with a dual objective in mind: 

(a) To perform the analysis of steady and 
unsteady natural convection in systems relevant 
to problems in materials processing such as the 
transient development of the flow field at low 
Prandtl numbers (casting applications) and 
the behavior of two phase system , relevant to 
slag- metal reactions. 
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(b) To compare the computed results with 
experimental data produced both by other 
investigators and the present investigation. 

While the experimental and computational 
techniques used in this study are analogous to 
those employed in recent investigations, the 
actual results to be presented are thought to 
complement available information on natural 
convection in confined systems. 

Regarding the organization of the paper, the 
formulation is given in Section 2, some computa- 
tional details are described in Section 3, and 
typical computed results are shown in Section 4. 
The experimental procedure is described in 
Section 5 and a comparison between measure- 
ment and prediction is presented in Section 6. 

2. FORMULATION 

The one phase system 
Let us consider a rectangular slot of height L, 

of width D and of infinite extent in the z direction, 
as sketched in Fig. 1. 

* 
, 
, 

7 

i 

X' 

1 

D 

FIG. 1. Schematic representation of the one phase system. 

Initially, let the fluid be at rest, and at a 
temperature TF,t and for subsequent times. let 
the vertical walls be kept at the constant 
temperatures Tz and Tz. 

The upper and lower surfaces may be con- 
sidered to have either fued temperature profiles 
(corresponding to some experimental results) 
or, these surfaces may be considered to be 
insulated. 

The problem is to find the time and spatial 
dependence of the velocities and the tempera- 
tures within the system. 

The following assumptions are made: 

(i) The fluid is considered to be Newtonian. 
(ii) The physical properties, such as viscosity, 

density, thermal conductivity, etc., are 
assumed to be independent of tempera- 
ture, and evaluated at Tf’, with the excep- 
tion of the contribution of the temperature 
dependent density to the buoyancy forces. 

(iii) Laminar flow throughout. 

While all these assumptions are restrictive, 
they are thought to represent quite a broad 
spectrum of practical situations. 

The problem may now be stated by expressing 
the continuity and the heat and momentum 
balance equations, together with the appropriate 
initial and boundary condition. Thus we have: 

g*+!Y=() 
aY* 

(continuity) 

dT* 
x+u:g+u;g 

Y 

=#$+$I (2) 

(energy balance) 

Finally the two components of the momentum 
balance equation may be written as [14]: 

t Dimensional variables are generally denoted by 
asterisks in the text. 
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and 

au; i ap* _$__+u~~*+u*%= --- 
ya * Y Pi aY* 

+fg+$q. (3) 

The initial and boundary conditions have to 

express the physical constraints imposed on the 
system, namely that the initial temperature is 
uniform, the initial velocity is zero, the velocity 
is zero at the boundaries, and that the tempera- 
tures are specified at the bounding surfaces. 

These are readily stated, available elsewhere 
[lS], and therefore will not be reproduced here. 

In order to express equations (l)--(3) in a form 
more suitable for solution by numerical tech- 
niques, let us introduce r*, the vorticity vector 
and $*, the stream function. For a two dimen- 
sional system, to be considered here, these are 
defined as follows : 

(4) 

and 

u*z!?!C 
x 

u*_a)(l* 
ay*' y ax*' 

(5) 

Here r and $ are related as follows: 

5*= - (6) 

Furthermore, for the purpose of computation 
it is desirable to express the governing equations 
in a dimensionless form. Let us introduce the 
following dimensionless variables : 

u*D2 
u =x. u;D 

x XL ’ 
uy = __ 

3c 

*=**$; 

and T = 
T* - 7-7 

Tf - T:. 

After some manipulation the governing equa- 
tions may then be expressed as: 

a5 at aq; D 2 a25 
~+ux~+uy-= E P's 

aY 0 

+Prd25_RaPr!E 
aY2 L aY 

where 

5 = _ D 2 a2* 
0 

a2* 
L ax2 ay2' 

(8) 

(9) 

(10) 

Here equation (8) is the dimensionless form 
of the energy balance equation and equation (9) 
is the vorticity transport equation which com- 
bines the two components of the equation of 
motion. 

The velocity boundary conditions are readily 
stated in terms of the stream function; it is 
noted that the conditions specifying a zero 
normal velocity component at the bounding 
surfaces are satisfied by requiring that the 
stream function be constant along the boundary. 

Equations (8x10) represent a complete state- 
ment of the problem. For high values of the 
Prandtl number, the vorticity transport equa- 
tion (9) simplifies to: 

0 D 2c+c=Ra 
L ax2 ay2 0 

e g 
L ay 

(11) 
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which may be put in the following form: 

=- 0 ; i&2. ay (12) 

Equation (12) is readily integrated by well- 
established, numerical techniques. 

The two phase system 
Let us consider the identical rectangular 

slot, described in the preceding section, but 
containing two immiscible fluids, separated by a 
horizontal interface. Let the upper and lower 
fluids be denoted by “b” and “a” respectively, 
and let the position of the interface be denoted 
by XT, the dimensionless equivalent of which 
is xi = x:/L. 

The differential equations describing such 
systems will be almost identical to those given 
previously, but we shall require one set of 
equations for each phase. 

The boundary conditions pertaining to the 
vertical walls will remain the same, but new 
boundary conditions will be required at the 
interface of the two immiscible liquids. On 
assuming that no deformation of the interface 
occurs (which seem reasonable for relatively 
low velocities) these have to express the con- 
tinuity of the temperature, of the heat flux, of 
the velocity and of the momentum flux. In 
addition we must have that of the interface; 
the vertical velocity components are zero in 
both phases. Thus we have: 

U.&(xi9 Y, t, = O; uZ&xi9 Y, t, = 0 1 

and 

T,fxis Y9 t, = Tbfxi9 Y9 t, 

;f ka g (Xi, y, t) = kb $ (Xi, Y, t) (14) 

where subscripts “a” and “b” refer to phase 
a and b respectively. 

3. THE TECHNIQUE FOR SOLUTION 

The governing equations were put in a finite 
difference form and a spatial grid of 11 x 11 or 
11 x 21 was established for the one fluid and 
two fluid systems, respectively. 

The alternating direction implicit variant of 
the Crank-Nicholson procedure was used for 

vorticity transport equations, and the successive 
overrelaxation technique was employed for the 
integration of the stream equation. 

The simultaneous solution of these three 
equations was accomplished by an iterative 
procedure, which contained the following main 
steps : 

(1) At a given time, for known values of the 
temperature, velocity, vorticity and stream 
fields, the temperature is advanced by one 
time step, by using the alternating direc- 
tion implicitly (A.D.I.) technique.? 

(2) This lirst estimate of, the temperature 
field is now used for obtaining a first 
estimate of the interior vorticity field, by 
using A.D.I. 

(3) Then, we compute values of the stream 
function, by using a successive over- 
relaxation technique. 

(4) From the stream function we compute 
the velocity components and the first 
outer loop is completed by calculating the 
vorticity at the boundaries, which satisfies: 
U, = UY = 0. 

(5) The new values of the vorticity thus found 
at the boundaries, meets the physical 
criteria imposed by the boundary condi- 
tions, but is now “out of step” with the 
interior vorticity field. To overcome this 
difficulty, another iterative loop is 

t Alternating direction implicit technique, as described 
in Peaceman and Rachford [16]. 
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created, with a view of finding a vorticity 
distribution which satisfied simultane- 
ously the vorticity transport equation and 
the boundary conditions on the stream 
equation. 

(6) This iterative loop consisted in recalculat- 
ing the vorticity and the stream function 
(and the temperature field) using the last 
value of the boundary vorticity, until two 
successive iterations agreed to within 
@l per cent. The actual velocities used in 
these iterations were arithmetic averages 
of those computed on the “old” and the 
“new” time steps. The continued use of this 
procedure eventually yielded the steady 
state solution. 

4. COMPUTED RESULTS 

Some typical computed results are shown in 
Figs. 2-4. A more extensive set of computed 
curves is available in the thesis [15] on which 
this paper is based. 

Figure 2 shows the behavior of a system with 
Pr = 1, Gr = 5OOOt and L/D = 1. Initially the 
fluid is stationary and the temperature field is 
uniform; at time = 0 both walls are raised to 
Tc = +0*5, with the horizontal surfaces insu- 
lated. (iYT/cYx = 0 at x = 0, x = 1). Here the 
circulation rate has to pass through a maximum 
at some intermediate time as the fluid is, of 
course, stationary both initially, and on the 
attainment of the steady state. The streamlines 
and the isotherms corresponding to such an 
intermediate time are shown in Fig. 2a and 2b, 
respectively. 

It is seen that the circulation pattern is 
composed of two countercurrent cells rather 
than having just one cell, as found for systems 
where the walls are kept at different tempera- 
tures. 

Had the slot been cooled, rather than heated, 
the streamline pattern would have been identical 
but for the direction of the currents. The 
isotherms for this case would have been the 

t Based on the temperature difference Tz - T:. 

(a) 

>O 0.75 

0 

! 

FIG. 2. Streamline patterns and isotherms for a system with 
Gr = 5000, Pr = 1.0, L/D = 1, for r > 0. T = +0.5 at 
y = 0 and at y = 1.0 for t > 0. 

(a) streamline pattern at t = @05, the numbers on the 
curves denote the fractional value of $: I),,,,, = 2.00. 

(b) isotherms at t = 0.05. 

mirror image, about the y axis, of those shown 
in Fig. 2b. 

If Fig. 3 we show the transient development 
of the stream and temperature field for a system 
with L/D = 1.0, Pr = 0.02 and Gr = 5000. 
Initially the fluid is stationary and the tempera- 
ture field is uniform; then at time = 0 both 
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FIG. 3, Streamline patterns and isotherms for a system with Gr = 5000, Pr = O-02, L/S = 1.0, where T = +@5 at y = 0 and 
y = 1, for t > 0. The upper and lower faces are insulated. 

(a) streamlines at t = 0.025; the numbers on the curves denote 4 x 10’. 
(b) isotherms at t = 0.025. 
(c) streamlines for t = 0.300. 

(d) isotherms for t = 0.300. 

vertical walls are suddenly raised to T = +0*5. both the stream and temperature fields are 
Inspection of Figs. 3a-3c shows, that for this established very rapidly. An unusual feature of 

system, which corresponds to liquid metals, this situation, which is characteristic of low 
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FIG. 4. The transient development of streamlines and isotherms for a two phase system. 
Fluid a: Gr = 20000, Pr = 30. 
Fluid b: Gr = 20000, Pr = 1.0. 

L/D = 2.0; for t r 0, T = -0.5 at y = 0 and T = 485 at y = 1.0. 
(a) streamline patterns at t = 0.0025: I),,~ = - l-40. 
(b) isotherms at t = 09025. 
(c) streamline patterns at t = 0.1, J/ma, = - 7.56. 
(d) isotherms at t = @ 1 



NATURAL CONVECTION IN A RECTANGULAR CAVITY 475 

Prandtl numbers, is the fact the extensive fluid 
circulation remains even when the temperature 
field is almost uniform. 

It follows that in this case the stream field 
decays much slower than the non-uniformities 
in the temperature. As identical considerations 
would apply to cooling and this behavior is of 
considerable practical importance as it explains 
the extensive circulation occurring in so~d~~ng 
ingots, even under conditions, where all the 
superheat has been removed. 

A comparison of Figs. 2 and 3 shows the 
expected behavior, namely that the circulation 
has a significant effect on the shape of the iso- 
therms at Pr = 19, whereas the tem~rature 
field is much less affected by the fluid motion at 
Pr = 0.02. 

Finally, Fig. 4 shows computed streamlines 
and isotherms for a two fluid system. Initially 
both fluids are at the same, uniform tempera- 
ture, and from t = 0, the 1.h.s. and r.h.s. walls 
are maintained at dimensionless temperatures 
of -0.5 and +05, respectively. The property 
values were so chosen, that the Prandtl number 
in the lower phase is twice that in the upper 
phase, whereas the Grashof numbers are equal 
in both phases. 

The circulation patterns are found to be 
similar to those in the single fluid systems; the 
higher value of Pr (or rather Ra) in phase (a) 
causes a stronger circulation here, but the higher 
thermal conductivity in the upper phase causes 
a more rapid development of the temperature 
field. 

5. APPARATUS AND EXPERIMENTAL 
PROCEDURE 

The apparatus 
The apparatus was so constructed to allow 

the study of an essentially two dimensional flow 
and temperatunzfield both under steady state 
and unsteady state conditions. 

The major components of the apparatus 
consisted of a rectangular enclosure which held 
the working fluid(s), a control system that 
maintained the wall temperatures at desired 
levels and the probe, together with its associated 

transport mechanism, and recorders used to 
measure and record the temperatures within the 
system. A schematic diagram of the apparatus 
is shown in Fig. 5. The rectangular slot, holding 

The enclosure 

Twenty-fourpoint 
tsiwmture recorder 

Cold 

IlOt 

FIG. 5. Schematic representation of the apparatus. 

the fluid(s) was 36 in. high, 24 in. long and 4.8 in. 
wide. The two opposing vertical plates which 
constituted the principal walls, were made of 
copper, whereas the “side walls” were made of 
plate glass, so as to allow visual observations. 
Water jackets were attached to the copper walls 
which contained fittings for the water inlet and 
outlet, and also for the thermocouple probes. 
The temperature of each copper wall was 
rna~t~~ to within @l”C of the desired value 
by circulating water of appropriate temperature 
through the jackets. The temperature of the 
circulating water streams was controlled by 
proportioning the feed from two constant 
temperature reservoirs. The temperature of the 
copper walls was measured at 24 locations, by 
chromel-alumel thermocouples, connected to a 
multichannel recorder. 
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The temperature within the fluid was 
measured by a thermistor probe, the shaft of 
which was mounted on a motorized worm gear 
mechanism, the programming of which allowed 
the “automatic” horizontal and vertical traverse 
of the system. 

The materials used 
The fluids used had to meet the criteria for 

immiscibility and their physical properties had 
to be such that Rayleigh numbers of the order 
of 104-lo5 could be obtained in the apparatus, 
at accurately measurable temperature differ- 
ences. This upper limit of the Rayleigh number 
was dictated by both observations [3] and 
predictions that above Ra N 2 x 104, secondary 
flows would begin to occur. 

From a practical viewpoint these criteria 
meant that we were looking for a pair of im- 
miscible fluids which were viscous and had 
moderate coefficients of thermal expansion. 

The property values of the two fluids selected 
are given in Table 1. 

Table 1. Property values ofthefluids used 

Numerical value 
- 

Property Fluid (a) Fluid (b) 
Therminol Fr-3 Ambiflow H813 

(Monsanto) (Dow Chemical 
Co.) 

Specific heat C. 
0239 0.45 

1.98 x lO-4 7.6 x 10 -’ 

2.36 x lO-4 4.92 x lO-4 

250.0 19.0 

expansion /I [“C- ‘1 
Thermal conductivity 

k [Cal/s cm”C] 
Viscosity 

fl> [PI 
Density, p 

Cg/cm31 
Thermal diffusivity 

K, lIcm’/sl 
Pr 
_.___- --- -_= 

1.54 1.06 

6.36 x 10m4 1.03 x lo-3 
2.5 x 10’ 1.75 x lo4 

Experimental procedure Under the experimental conditions the attain- 
All the experimental runs were carried out ment of steady state took usually about 7 h, and 

using the two phase system, although in the 
majority of cases measurements were made 
only in one of the phases. 

In a given series of experimental runs the 
container was filled with the heavier of the two 
liquids (Therminol) to a depth of about 8 in. 
The lighter fluid (Ambiflow) was then carefully 
poured on top of the Therminol, bringing the 
total depth to about 16 in. 

In the transient runs the entire system was 
brought to a stationary isothermal state by 
setting the wall temperature to the same values 
and by allowing some 24 h for the system to 
attain thermal equilibrium. The attainment and 
approach to thermal equilibrium was measured 
by taking horizontal temperature profiles at 
various vertical levels. 

It was found that even small temperature 
changes in the room, in which the apparatus 
was located, had a significant effect on the 
temperature distribution in the vicinity of the 
top and bottom surfaces. These effects were, 
however, confined to a finite distance from the 
horizontal bounding surfaces (say 14 in.) and 
did not affect the transient response of the 
system, as measured near the horizontal center 
line of the fluid layer. In the comparison of 
experimental measurements with predictions 
in the steady state, appropriate allowance was 
made for heat exchange between the fluid and 
the environment through the horizontal bound- 
aries; this was done by the adjustment of the 
boundary conditions at x = 0 and x = 1 in the 
computation. 

On the attainment of steady, isothermal 
conditions, one of the wall temperatures was 
raised to the desired value; (T,* - T:) was 
usually of the order of 3-5°C and the traverse 
of the probe was initiated. When steady state 
was reached, as evidenced by the temperature 
recordings, the recorders and the probe mech- 
anism were shut down. Then one more tempera- 
ture profile’was taken 24 h later, to ensure that 
steady state had indeed been established. 
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(b) 
Y 

FIG. 6. A comparison of experimental and computed steady state isotherms for L/D = 1.83, Ra = 8.2 x 103 and Pr = 
2~45x103;T=-05aty=O,T=+0~5aty=1:T=-0~5+yatx=1,andT=-0~4atx=0. 

(a) Experimental isotherms. 
(b) Computed isotherms. 

about 3 h were required for the fluid tempera- ing computed isotherms, for identical values of 
ture at the center to reach 63 per cent of its final, L/D, Ra and Pr = 00 are shown in Fig. 6b. The 
steady value. Both these times were quite long, close agreement between the experimental and 
compared with the time taken to establish a the computed profiles is readily apparent. 
new, steady wall temperature, which required It is noted that for the experimental conditions 
about 6 min. Thus the change in the wall the horizontal temperature profile at the upper 
temperature could be regarded as a stepwise boundary was nearly linear, whereas the 
process in comparison to the time scale of temperature profile at the lower boundary was 
convective transfer. approximately constant, i.e. 

6. COMPARISON OF THE EXPERIMENTAL 
RESULTS WITH PREDICTIONS 

Figure 6a shows steady state isotherms ob- 
tained experimentally for L/D = 1.83, Ra = 
8.2 x lo3 and Pr = 245 x lo5 ; the correspond- 

T(l,y) N -0.5 + y (15) 

and 

T(0, y) N -0.4. (16) 

This temperature distribution resulted from 
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-o-ii’,; 
t: ml” 

FIG. 7. A comparison of the predicted and measured time 
dependence of temperature at a given location for a system: 
L/D = 1.83, x = 1.03 x 10-s cm* s 

Q Experimental data for Ra = 1.25 x 105. 

the fact that for this particular experimental run 
the temperature of the environment was lower 
than that of either wall. The experimentally 
determined temperature proliles, at the bound- 
ary, as given by equations (15) and (16) were 
used as the boundary conditions in the compu- 
tation. 

It is of interest to compare measurement and 
prediction in the transient regime. This is done 
in Fig. 7 showing a plot of the dimensionless 
temperature against time in the “Ambiflow” 
fluid, at a location at 1.6 in from the cold wall 
and at the horizontal centerline, for L/D = 1.83, 
and Ra = 1-25 x 10’. The experimental data 
are denoted by the circles, and the computed 
data for Ra = 6 x 104t are represented by the 

t The legitimacy of using Ra in conjunction with a 
Prandtl number may be queried. it is noted, however. 
that for this asymptote the vorticity transport equation is 
written as: 

(L/D)2 + f$ = Ra(D/L).iz. 

which does contain Ra 

FIG. 8. Plot of the computed fluid temperature at the center of the cavity against t x x showing the effect 
of the Rayleigh number. 

Legend : 
0 Ra=4000. 

11 Ra = 16000. 

A Ra=bOOOO. 
Ra=60000. 
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squares; it is seen that good agreement exists 
between the computed and the measured data. 

The fact that the value of Ra for the computed 
data was about half of that corresponding to the 
experimental conditions, deserves comment. 
The infinite Prandtl number asymptote was 
used for the computation, and for the numerical 
procedureused,Ra = 6 x 104wasthemaximum 
value which still gave a stable solution. 

The error introduced by not matching the 
Rayleigh number exactly in the assessment of 
the transient temperature profile, is, however 
rather less than what one might expect. 

To illustrate this point, Fig. 8 shows a plot 
of the computed dimensionless temperature at 
the center of the slot, against the product 
(dimensionless time x thermal diffusivity) with 
the Rayleigh number as a parameter. These 
calculations were performed, by using the 
infinite Prandtl number asymptote. It is seen 
that within the range 16000 < Ra < 60000 the 
response of the system is not markedly affected 
by the value of the Rayleigh number. This 
finding is in itself of interest and may be re- 
garded as a supporting argument for the 
procedure used in the comparison shown in 
Fig. 7. 

In Fig. 9 there is shown a plot of the steady 
state temperature field for the two fluid system; 
dimensional spatial coordinates are used but 
the isotherms are represented in a dimensionless 
form. The hot and the cold walls were kept at 
17.5 and 15°C respectively; the Rayleigh num- 
bers corresponding to this temperature difference 
were 1.74 x lo5 and 8200 respectively. The 
isotherms shown in the lower layer are of a 
characteristic S shape which is consistent with 
one rotational cell, as discussed earlier. 

The isotherms appearing in the upper fluid 
provide evidence for secondary flow, which is in 
agreement with Elder’s experimental findings 
for single fluid systems. 

It is noted that the presence of the upper fluid 
does not modify appreciably the temperature 
profile within the lower fluid, except for a region 
in the vicinity of the interface. This finding is in 
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agreement with the computed results given in 
Section 4. 

As the measurements made in this investiga- 
tion concerned primarily the temperature field, 
it is of interest to compare the computed results 

15in 

x* 

78il 

* 48in 

FIG. 9. Experimentally measured steady state isotherms for 

T: = lS”C, Tz = 175, Ra, = 1.74 x lo’, Ra, = 8200. 



480 J. SZEKELY and M. R. TODD 

I I I I 
40 50 60 70 80 

log Grx 

FIG. 10. Plot of the log of the local Nusselt number against the log of the local 

Grashof number showing the effect of Gr (based on the width of the cavity). 

~~ Nu = 0.231 Gr0’3. 
n GrX zz 104 x 

111 Gr = 5 x 104, computed results. 

Gr = 105. 

FIG. 11 A comparison of an experimentally measured 
velocity profile by Elder [6] with computed results. The 
conditions correspond to: x = 0.5, Ra = 4 x 105, L/D = 

18.6. 

FIG. 12. The onset of secondary flows at high Rayleigh 
numbers. Streamline pattern for Rn = 4 x 105. Pr = 0.733. 

L/D = 20, I/I,,, = -9.15. 
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with data reported in the literature on heat 
transfer and on velocity profiles. 

Figure 10 shows a plot of the local Nusselt 
number against the local Grashof number; 
the solid line represents an empirical correlation 
proposed by Eckert and Carlson, for air: 

Nu, = 0.231 Gr,0’3 (17) 

whereas the discrete points represent the com- 
puted results. It is seen that the computed 
results are in good agreement with the experi- 
mental correlation. These results are relatively 
insensitive to Gr (i.e. the Grashof number, based 
on the width of the cavity) in apparent agreement 
with the findings of Eckert and Carlson. 

Elder’s work represents one of the few recent 
studies aimed at the measurement of velocity 
profiles in confined systems. Figure 11 shows 
excellent agreement between a measured velocity 
profile, depicted by a continuous line and the 
computed values (for identical physical condi- 
tions) denoted by the circles. 

Finally, it is noted, that Elder reported that 
strong secondary cell activity occurred in his 
experiments, once the Rayleigh number ex- 
ceeded 3 x 105. The computed results showed a 
similar trend, as seen in Fig. 12 illustrating the 
generation of secondary cells at Ra = 4.0 x 10’. 

While the mesh size used in the computation 
was too crude for the accurate definition of these 
secondary cells, the parallel between measure- 
ment and analysis is quite remarkable. 

7. CONCLZJDING REMARKS 

The analysis is presented for transient natural 
convection in a rectangular cavity, holding either 
a single fluid, or two immiscible liquids. 

The numerical techniques used were 
analogous to those employed by other investi- 
gators, however in the presentation of the results 
we Stressed q.X?CtS of the problem which were 
relatively unexplored up to the present. Thus 
attention was paid to transient behavior, to two 
phase systems, and to the effect of a low Prandtl 
number. 

The computed results were found to be in 
good agreement with both the experimental 
data obtained in the present study and with the 
measurements reported by other investigators. 

The computed results for the unsteady state 
behavior of systems with low Prandtl numbers 
are relevant to casting problems and our 
findings explain observed behavior, that circula- 
tion currents may persist in molten metal 
systems long after the temperature field has 
attained its final uniform value. 
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CONVECTION NATURELLE DANS UNE CAVITtl RECTANGULAIRE 

R&sum&On analyse le cas d’une convection naturelle laminaire transitoire B l’intbieur d’une caviti: 
rectangulaire contenant soit un fluide, soit deux liquides non miscibles. Les Cquations aux d&iv&es par- 
tielies sont int&gr&s numbriquement et les rtsultats obtenus sont pr&sent&s en configurations de lignes de 
courant transitoires et d’isothermes, ceci pour une vari&tt de conditions renfermant des valeurs hautes. 
basses et inte~~diaires du nombre de Prandtl, Les r&uitats du calcul s’accordent aver les resultats exp&i- 
mentaux obtenus dam cette Ctude et avec ceux rapport&s par d’autres chercheurs. Une telle comparaison 
est p&en&e concernant les profils de temp&rature. ‘de vitesse, le comportement transitoire et i’existence 

d’&coulements secondaires. 

FREIE KONVEKTION IN EINEM RECHTECKIGEN BEH;iLTER 

Zussarnme&asnng-Es wird eine Analyse gegeben fiir instationgre, freie Konvektion in einem rechteckigen 
BehBlter, der entweder ein Fluid oder zwei nichtmischbare Fliissigkeiten enthllt. Die sich daraus ergebenden 
Differentialgleichungen werden numerisch integriert. Ergebnisse werden angegeben Rir instationle 
Stromlinienbilder und Isothermen unter einer Vielzahl von Bedingungen, einschliesslich hoher, niedriger 
und mittlerer Werte von Prandtl-Zahlen. 

Die berechneten Ergebnisse stimmen mit den experimentellen Daten i&rein, die ebenfalls aus dieser 
Untersuchung stammeh iiber die jedoch andere Forscher berichten. Der Vergleich bezieht sich auf Tem- 
peraturpro~l~ Gesch~n~gkei~pro~l~ das instation& Verhaften und das Einsetzen von Sekundiir- 

str~m~gen. 

ECTECTBEHHAR KOHBEICLjklfl B IlPRMOYI’OXbHOfl TIOJIOCTkl 

AHHoTsqasr-_Aan aHanm3 HeycTaHommmerocfi naMuHapHor0 pemama np~ eeTecTseHHol?. 
KOHBeKlJHH B IlpfIMOyrOJlbHOt IIOAOCTH, 3alIOJIeHHOit n~i60 ORHOpOnHOti ?%iAKOCTbH), JIM60 

ABYMR Hecr+femsfBaioIqmrwCn HWAHOCT~~MA. IIonyqeKwe ~n#$epeH~KanbKbxe ypamiemw 

WiCJIeHHO IlpOEIHTerpHpOBaH~, M npunofis~c~ pac4eTHHe ~M[HEIH ToKa H H30TepMbI nprn 
pasnasam ~CJIOBHR[X, BHaImYaJi 6oabmee, ManbIe YI nponremyTosHMe 3HaYeHuH gMcem 
I-IpaHArJrn. 

PaCYeTHbIe 3HaYeHtlR COBna)JaIoT C 3HCIIepAMeHTaYfbHbIMii AaHHbiMH, ItOJIy4eHHbIMti KaK R 

3Toik p&km?, TaH H B paeiOTaX, Ony6~~KOBaHH~M~ @ylWMI4 HCCJIeROBaTeJIBMR. Tawoe 

~pa~~eH~e~~e~a~0~~~ npo~~aeftTe~nepaTyp-si,&KO~OCT~,xapaKTep~cT~KKeycTo~smerocR 
pemmrmaa KaranaB~Topar~arxTeueKEiB. 


